Given:
Inlet \( \rightarrow \) \( V_{1}=800\,\text{km/h}=800/3.6=222.22\,\text{m/s} \),
\( \dot{m}_{1}=35\,\text{kg/s} \)
Outlet \( \rightarrow \) \( V_{2}=590\,\text{m/s} \),
\( \dot{m}_{2}=35\,\text{kg/s} \) (ignoring fuel),
\( p_{2}=p_{1}=p_{\text{ambient}} \)
The schematic diagram of the problem description is shown in Fig. 1.
Using the conservation of momentum along horizontal direction,
$$ \begin{aligned} \text{Thrust} =&\ \text{ rate of momentum exiting }-\text{ rate of momentum entering}\\ &\ + \text{ pressure force at exit }-\text{ pressure force at inlet}\\ \\ \text{Thrust} =&\ \dot{m}V_{2}-\dot{m}V_{1}+\left(p_{2}-p_{1}\right)A_{\text{exit}}\\ \\ \text{Thrust} =&\ \dot{m}V_{2}-\dot{m}V_{1}+0\\ \\ \text{Thrust} =&\ \dot{m}\left(V_{2}-V_{1}\right)\\ \\ \text{Thrust} =&\ 35\times\left(590-222.22\right) \end{aligned} $$ $$ \boxed{\text{Thrust}=12872.3\,\text{N}} $$--- Ad ---
---