Home Back
Chapter 1: Introduction



Problem 1.6:

Two air streams are mixed in a chamber. One stream enters the chamber through a 5 cm diameter pipe at a velocity of 100 m/s with a pressure of 150 kPa and a temperature of 30oC. The other stream enters the chamber through a 1.5 cm diameter pipe at a velocity of 150 m/s with a pressure of 75 kPa and a temperature of 30oC. The air leaves the chamber through a 9 cm diameter pipe at a pressure of 90 kPa and a temperature of 30oC. Assuming that the flow is steady, find the velocity in the exit pipe.

Solution:

Given: Steady flow
- \( T_{1}=30^{\circ}\text{C}=303\,\text{K} \), \( p_{1}=150\,\text{kPa} \), \( D_{1}= ⌀5\,\text{cm} \), \( V_{1}=100\,\text{m/s} \) (Inlet)
- \( T_{2}=30^{\circ}\text{C}=303\,\text{K} \), \( p_{2}=75\,\text{kPa} \), \( D_{2}= ⌀1.5\,\text{cm} \), \( V_{2}=150\,\text{m/s} \) (Inlet)
- \( T_{3}=30^{\circ}\text{C}=303\,\text{K} \), \( p_{3}=90\,\text{kPa}, D_{3}= ⌀9\,\text{cm} \), \( V_{3}=?\,\text{m/s} \) (Outlet)

The schematic diagram of the problem description is shown in Fig. 1.


Schematic diagram of problem

The densities of air at the various stations may be calculated using the respective pressures, temperatures and using the ideal gas equation.

$$ \rho_{1}=\frac{p_{1}}{R\,T_{1}}=\frac{150\times10^{3}}{287\times303}=1.7249\,\text{kg/m}^{3} $$ $$ \rho_{2}=\frac{p_{2}}{R\,T_{2}}=\frac{75\times10^{3}}{287\times303}=0.86246\,\text{kg/m}^{3} $$ $$ \rho_{3}=\frac{p_{1}}{R\,T_{1}}=\frac{90\times10^{3}}{287\times303}=1.0349\,\text{kg/m}^{3} $$

--- Ad ---

---


Using the conservation of mass equation,

$$\begin{aligned} m_{1}+m_{2} &= m_{3} \\ \\ \rho_{1}\,A_{1}\,V_{1}+\rho_{2}\,A_{2}\,V_{2} &= \rho_{3}\,A_{3}\,V_{3} \\ \\ \rho_{1}\times\frac{\pi}{4}D_{1}^{2}\times V_{1} + \rho_{2}\times\frac{\pi}{4}D_{2}^{2}\times V_{2} &= \rho_{3}\times\frac{\pi}{4}D_{3}^{2}\times V_{3} \\ \\ 1.7249\times\frac{\pi}{4}\times0.05^{2}\times100 +0.86246\times\frac{\pi}{4}\times0.015^{2}\times150 & = 1.0349\times\frac{\pi}{4}\times0.09^{2}\times V_{3} \end{aligned}$$ $$ V_{3}=\frac{1.7249\times\frac{\pi}{4}\times0.05^{2}\times100 + 0.86246\times\frac{\pi}{4}\times0.015^{2}\times150}{1.0349\times\frac{\pi}{4} \times0.09^{2}} $$ $$ \boxed{V_{3}=54.915\,\text{m/s}}\ . $$



--- Ad ---

---


For further details, please contact me at:
mail.spbhat@gmail.com
If you observe any error or want to provide me with feedback, please don't hesitate to contact me.

Thanks,
Sourabh Bhat