Given: T1=120∘C=393K, V1=100m/s, T2=−50∘C=223K, V2=300m/s.
The mass flow rate is same through the two inlets, therefore,
˙m1=˙m2=˙m ˙m3=˙m1+˙m2=2˙m--- Ad ---
---
Applying the conservation of energy equation (without heat and work),
(˙m1cpT1+˙m1V212)+(˙m2cpT2+˙m2V222)=(˙m3cpT3+˙m3V232) (˙mcpT1+˙mV212)+(˙mcpT2+˙mV222)=(2˙mcpT3+2˙mV232) (cpT1+V212)+(cpT2+V222)=(2cpT3+2V232) T3=cpT1+V212+cpT2+V222−V232cpAssuming cp=1005J/kg-K for air and the velocity in the large chamber to be effectively zero,
T3=1005×393+10022+1005×223+30022−02×1005 T3=332.876K=59.8756∘C--- Ad ---
---