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Abstract

In simulation of two-fluid flows it is very important to cap-
ture the interface accurately. The interface in a two-fluid
flow behaves like a contact observed in case of compress-
ible fluid flows. Therefore, a contact preserving Riemann
solver is likely to provide more accurate solution for two-
fluid flows. A HLLC-type (Harten Lax van-Leer with con-
tact) Riemann solver is proposed for incompressible Euler
equations tightly coupled with the volume of fluid equation.
The new solver is called HLLC-VOF Riemann solver. The
efficacy of the new Riemann solver is tested by solving stan-
dard test problems involving two fluids. The results show an
improved accuracy over a non-contact preserving Riemann
solver.
Keywords: Contact Preserving Riemann Solver; Two-phase

Flows; Volume of Fluid; Arti�cial Compressibility; HLLC-VOF

I. INTRODUCTION

There are various methods available for simulation of

two �uid �ows. The majority of these methods can be di-

vided into two groups: the interface tracking methods and

the volume tracking methods. In interface tracking meth-

ods the interface front is represented by a set of connected

points. The volume tracking methods on the other hand, use

a marker function to track the volume by using an additional

advection equation. The merging and breaking of interfaces

is handled naturally by these methods without a need of

any additional treatment. The level-set (LS) method and

the volume of �uid (VOF) method are two important meth-

ods in this category. Here, we have used the VOF method

which uses the volume fraction as the marker function.

The steady state inviscid �uid �ow problem is solved by

using the arti�cial compressibility formulation. These equa-

tions are hyperbolic in nature, and therefore allow to use the

advanced high order methods to solve the equations very ac-

curately. The volume fraction advection equation is tightly

coupled with the steady state �uid �ow equations to obtain

a two-�uid model. The unsteady equations are obtained by

using a dual time stepping methodology.

The convective part of the equations is evaluated by

using a novel Riemann solver which preserves the contact.

The eigenvalue associated with the additional volume frac-

tion equation has a value of material velocity. The contact

preserving Riemann solver can therefore be assumed to pro-

vide better solution compared to non-contact preserving

solvers. The results obtained by using the new Riemann

solver are compared with HLL solver [1] and available re-

sults from literature, to access the e�cacy of the new solver.

II. THE GOVERNING EQUATIONS
The governing equations, using arti�cial compressibil-

ity formulation and VOF, for a incompressible steady-state

two-phase inviscid �ow are given as,
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where β is a constant arti�cial compressibility paramater,

u, v are the velocity components in x and y directions re-

spectively and p is the pressure. The density is given by,

ρ = ρ (C) = ρwC + ρa (1 − C) . (2)

III. NUMERICAL FORMULATION
A. Finite volume discretization
The �nite volume discretization formula for a M sided

cell can be written as,

Ωi
∂U

∂τ
+

M∑
m=1

(Fnx + Gny)m Γm = ΩiS; (3)

where, nx, ny are the normals to each of the M sides, Ω is
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the area of the cell and Γ is the length of the cell sides.

B. Convective flux calculation
The solution reconstruction of the discrete data is done

by using the �fth order weighted essentially non-oscillatory

(WENO) method as described in [2].

The three-wave structure used for HLLC-VOF formu-

lation is shown in �gure 1. Based on the Rankine-Hugoniot

jump conditions we can write the �ux at the interface as,

FHLLC−V OF =


FL 0 ≤ SL

F∗L = FL + SL (U∗L −UL) SL ≤ 0 ≤ S∗

F∗R = FR + SR (U∗R −UR) S∗ ≤ 0 ≤ SR

FR SR ≤ 0

(4)

After carrying out mathematical manipulations of the

Rankine-Hugoniot conditions across the three waves and the

generalized Riemann invariants, we have obtained the follow-

ing relations for the unknown intermediate states,

p∗L = p∗R = p∗ =
β(uL − uR) − SLpL + SRpR

SR − SL
; (5)

C∗L =
CL (SL − uL)

SL − S∗
; v∗L =

(SL − uL) ρ (CL) vL
(SL − S∗) ρ (C∗L)

; (6)

C∗R =
CR (SR − uR)

SR − S∗
; v∗R =

(SR − uR) ρ (CR) vR
(SR − S∗)ρ (C∗R)

; (7)

S∗ =
uLρ (CL) (uL − SL) − uRρ (CR) (uR − SR) − pR + pL

(ρa − ρw) (CRuR − CLuL) + SRρ (CR) − SLρ (CL)
.

(8)

These equations can be used for calculation of U∗L and U∗R,

which can then be used for calculation of required �ux by

substituting in (4).

C. Dual time stepping
The solution obtained from the arti�cial compressibil-

ity equations is only valid at the steady state. Since we are

interested in simulation of unsteady problems, we have to

use a dual time stepping strategy. The methodology used

here is similar to the one used by Gaitonde in [3].

IV. RESULTS AND DISCUSSION
The volume of �uid equations coupled with the

incompressible-Euler equations are solved by using the dual

time stepping method. The two �uids considered are water

(ρw = 1000) and air (ρa = 1.125). The acceleration due to

gravity is taken as (gx, gy) = (0,−9.8). Two of the tested

problems are presented below and compared with results

from literature.

A. Dam break problem
This is a classical two-phase test problem. In this

problem, a column of water is placed initially towards the

left-bottom corner in a rectangular domain as given in [4].

Under the in�uence of gravity the water column collapses

and evolves into complicated free surface. The boundary

condition for all the sides is set to slip walls. The experi-

mental results for the location of the water fronts (left top

and right) are available in literature [5]. The interface lo-

cation is shown at 0.2, and 0.6 seconds in �gure 2. The

comparison of the results of the HLLC-VOF solver with

HLL solver and the experimental data is shown in �gure 3.

In this plot h is the height of the interface at the left which

is normalized by the initial height b = 0.9, l is the loca-

tion of the front of the water surge which is normalized by

the initial width of the water column a = 0.45. It can be

seen that the HLLC-VOF solver �ts the experimental data

slightly better compared to the HLL solver.

Figure 1: HLLC-VOF wave structure
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Figure 2: Dam Break Problem
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B. Low amplitude sloshing problem
In this problem, the surface of water is set initially by

a half-cosine function with an amplitude of 0.005 m and a

mean height of 0.05 m as given in [4]. Under the in�uence

of gravity the water surface starts sloshing inside the square

box of dimensions 0.1 m × 0.1 m. The boundary condition

for all the sides is set to slip walls. The �rst mode of oscilla-

tion can be estimated analytically [6] to be having a period

of approximately 0.3739 seconds. The interface location is

plotted at time 0.19 seconds in �gure 4. The comparison of

the theoretical �rst mode of oscillation with the y-location

of interface at the left wall is shown in �gure 5.

The frequency of oscillation is captured by both the

solvers properly. The higher amplitude for odd peaks, com-

pared to the analytical �rst mode, captured by HLLC-VOF

solver is actually more accurate compared to HLL. This oc-

curs due to the secondary mode of oscillations as described

in [4].
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Figure 3: Dam break - height and surge position

0.02 0.04 0.06 0.08

0.02

0.04

0.06

0.08

air
water

Figure 4: Low amplitude sloshing (t=0.19 seconds)

V. CONCLUSION
A new contact preserving HLLC-type Riemann solver

is developed for incompressible two-phase Euler equations.
The new solver is tested by solving standard test problems.
It is observed that the HLLC-VOF Riemann solver pro-
vides accurate solutions compared to a non-contact preserv-
ing Riemann solver.
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Figure 5: Low amplitude sloshing - �rst mode
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