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Abstract

In simulation of two-fluid flows it is very important to cap-
ture the interface accurately. The interface in a two-fluid
flow behaves like a contact observed in case of compress-
ible fluid flows. Therefore, a contact preserving Riemann
solver is likely to provide more accurate solution for two-
fluid flows. A HLLC-type (Harten Lax van-Leer with con-
tact) Riemann solver is proposed for incompressible Euler
equations tightly coupled with the volume of fluid equation.
The new solver is called HLLC-VOF Riemann solver. The
efficacy of the new Riemann solver is tested by solving stan-
dard test problems involving two fluids. The results show an
improved accuracy over a non-contact preserving Riemann
solver.
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. INTRODUCTION

There are various methods available for simulation of
two fluid flows. The majority of these methods can be di-
vided into two groups: the interface tracking methods and
the volume tracking methods. In interface tracking meth-
ods the interface front is represented by a set of connected
points. The volume tracking methods on the other hand, use
a marker function to track the volume by using an additional
advection equation. The merging and breaking of interfaces
is handled naturally by these methods without a need of
any additional treatment. The level-set (LS) method and
the volume of fluid (VOF) method are two important meth-
ods in this category. Here, we have used the VOF method
which uses the volume fraction as the marker function.

The steady state inviscid fluid flow problem is solved by
using the artificial compressibility formulation. These equa-
tions are hyperbolic in nature, and therefore allow to use the
advanced high order methods to solve the equations very ac-
curately. The volume fraction advection equation is tightly
coupled with the steady state fluid flow equations to obtain
a two-fluid model. The unsteady equations are obtained by
using a dual time stepping methodology.
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The convective part of the equations is evaluated by
using a novel Riemann solver which preserves the contact.
The eigenvalue associated with the additional volume frac-
tion equation has a value of material velocity. The contact
preserving Riemann solver can therefore be assumed to pro-
vide better solution compared to non-contact preserving
solvers. The results obtained by using the new Riemann
solver are compared with HLL solver [1] and available re-
sults from literature, to access the efficacy of the new solver.

Il. THE GOVERNING EQUATIONS

The governing equations, using artificial compressibil-
ity formulation and VOF, for a incompressible steady-state
two-phase inviscid flow are given as,
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where (3 is a constant artificial compressibility paramater,
u, v are the velocity components in z and y directions re-
spectively and p is the pressure. The density is given by,
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lll. NUMERICAL FORMULATION

A. Finite volume discretization

The finite volume discretization formula for a M sided
cell can be written as,
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where, n,, n, are the normals to each of the M sides, Q2 is



the area of the cell and T is the length of the cell sides.

B. Convective flux calculation

The solution reconstruction of the discrete data is done
by using the fifth order weighted essentially non-oscillatory
(WENO) method as described in [2].

The three-wave structure used for HLLC-VOF formu-
lation is shown in figure 1. Based on the Rankine-Hugoniot
jump conditions we can write the flux at the interface as,
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After carrying out mathematical manipulations of the
Rankine-Hugoniot conditions across the three waves and the
generalized Riemann invariants, we have obtained the follow-
ing relations for the unknown intermediate states,
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These equations can be used for calculation of U,y and U,g,
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which can then be used for calculation of required flux by
substituting in (4).

C. Dual time stepping

The solution obtained from the artificial compressibil-
ity equations is only valid at the steady state. Since we are
interested in simulation of unsteady problems, we have to
use a dual time stepping strategy. The methodology used
here is similar to the one used by Gaitonde in [3].

IV. RESULTS AND DISCUSSION

The volume of fluid equations coupled with the
incompressible-Euler equations are solved by using the dual
time stepping method. The two fluids considered are water
(pw = 1000) and air (p, = 1.125). The acceleration due to
gravity is taken as (g, 9,) = (0,—9.8). Two of the tested
problems are presented below and compared with results
from literature.

A. Dam break problem

This is a classical two-phase test problem. In this
problem,; a column of water is placed initially towards the
left-bottom corner in a rectangular domain as given in [4].
Under the influence of gravity the water column collapses
and evolves into complicated free surface. The boundary
condition for all the sides is set to slip walls. The experi-
mental results for the location of the water fronts (left top
and right) are available in literature [5]. The interface lo-
cation is shown at 0.2, and 0.6 seconds in figure 2. The
comparison of the results of the HLLC-VOF solver with
HLL solver and the experimental data is shown in figure 3.
In this plot h is the height of the interface at the left which
is normalized by the initial height b = 0.9, [ is the loca-
tion of the front of the water surge which is normalized by
the initial width of the water column a = 0.45. It can be
seen that the HLLC-VOF solver fits the experimental data
slightly better compared to the HLL solver.
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Figure 1: HLLC-VOF wave structure

t=0.2 seconds

Figure 2: Dam Break Problem



B. Low amplitude sloshing problem

In this problem, the surface of water is set initially by
a half-cosine function with an amplitude of 0.005 m and a
mean height of 0.05 m as given in [4]. Under the influence
of gravity the water surface starts sloshing inside the square
box of dimensions 0.1 m x 0.1 m. The boundary condition
for all the sides is set to slip walls. The first mode of oscilla-
tion can be estimated analytically [6] to be having a period
of approximately 0.3739 seconds. The interface location is
plotted at time 0.19 seconds in figure 4. The comparison of
the theoretical first mode of oscillation with the y-location
of interface at the left wall is shown in figure 5.

The frequency of oscillation is captured by both the
solvers properly. The higher amplitude for odd peaks, com-
pared to the analytical first mode, captured by HLLC-VOF
solver is actually more accurate compared to HLL. This oc-
curs due to the secondary mode of oscillations as described
in [4].
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Figure 3: Dam break - height and surge position
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Figure 5: Low amplitude sloshing - first mode

Figure 4: Low amplitude sloshing (t—0.19 seconds)

V. CONCLUSION

A new contact preserving HLLC-type Riemann solver
is developed for incompressible two-phase Euler equations.
The new solver is tested by solving standard test problems.
It is observed that the HLLC-VOF Riemann solver pro-
vides accurate solutions compared to a non-contact preserv-
ing Riemann solver.
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