Solution prepared by:
 Bintang ASWAM,
 https://github.com/baswam95
 Analytical Approach of Tangency on Geometry Problem
 (posted by Mr.Sourabh-Bhat)

Figure 1. Schematic diagram of the problem ${ }^{[1]}$
Analytical solution:

$1{ }^{\text {st }}$ Approach:

From your final tangent line equation, it gives the following result:

$$
\left(x_{P}-x_{0}\right) \cos \theta+\left(y_{P}-y_{o}\right) \sin \theta-r=0
$$

In behalf of algebraic manipulation, let define Δx and Δy as given below:

$$
\Delta x \equiv x_{p}-x_{o} ; \Delta y \equiv y_{p}-y_{o}
$$

then,

$$
\begin{equation*}
\Delta x \cos \theta+\Delta y \sin \theta-r=0 \tag{1.1}
\end{equation*}
$$

Let's recall trigonometry identity as given below:

$$
\sin ^{2} \theta+\cos ^{2} \theta=1 \leftrightarrow \cos ^{2} \theta=1-\sin ^{2} \theta
$$

Next, let's rearrange the form of (1.1) by taking square on both of sides as follows:

| $(r-\Delta y \sin \theta)^{2}=(\Delta x \cos \theta)^{2} \leftrightarrow r^{2}-2 r \Delta y \sin \theta+\Delta y^{2} \sin ^{2} \theta=\Delta x^{2} \cos ^{2} \theta$ | (1.2) |
| :--- | :--- | :--- |

Now, let's substitute $\cos ^{2} \theta$ from trigonometry identity into (1.2) and by a little bit rearrangement of (1.2), it gives

$$
\begin{equation*}
\sin ^{2} \theta-\frac{2 r \Delta y}{\Delta x^{2}+\Delta y^{2}} \sin \theta+\frac{r^{2}-\Delta x^{2}}{\Delta x^{2}+\Delta y^{2}}=0 \tag{1.3}
\end{equation*}
$$

It can be viewed that (1.3) resembles the general quadratic equation in which $\sin \theta$ as an unknown variable. Otherwise, I can apply "abc-formula" expressed below:

$$
x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a} ; D=b^{2}-4 a c
$$

in this case, $a=1 ; b=\frac{-2 r \Delta y}{\Delta x^{2}+\Delta y^{2}} ; c=\frac{r^{2}-\Delta x^{2}}{\Delta x^{2}+\Delta y^{2}}$
then,

$$
\sin \theta_{1,2}=\frac{-\left(\frac{-2 r \Delta y}{\Delta x^{2}+\Delta y^{2}}\right) \pm \sqrt{\left(-\frac{2 r \Delta y}{\Delta x^{2}+\Delta y^{2}}\right)^{2}-4(1)\left(\frac{r^{2}-\Delta x^{2}}{\Delta x^{2}+\Delta y^{2}}\right)}}{2(1)}
$$

by a little bit simplification, it can be obtained that

$$
\sin \theta_{1,2}=\frac{r \Delta y \pm \Delta x \sqrt{\Delta x^{2}+\Delta y^{2}-r^{2}}}{\Delta x^{2}+\Delta y^{2}}
$$

From (1.4), It has two distinct solutions which are θ_{1} and θ_{2}. Therefore, both of θ_{1} and θ_{2} are expressed below:

$$
\begin{aligned}
& \theta_{1}=\sin ^{-1}\left(\frac{r \Delta y+\Delta x \sqrt{\Delta x^{2}+\Delta y^{2}-r^{2}}}{\Delta x^{2}+\Delta y^{2}}\right) \\
& \theta_{2}=\sin ^{-1}\left(\frac{r \Delta y-\Delta x \sqrt{\Delta x^{2}+\Delta y^{2}-r^{2}}}{\Delta x^{2}+\Delta y^{2}}\right)
\end{aligned}
$$

It's known that both of θ_{1} and θ_{2} expressed in (1.5) are evaluated in radian unit (not in degree unit).

Moreover, the coordinate of tangency point $\left(X_{T}, Y_{T}\right)$ associated with θ_{1} and θ_{2} is given below:

$$
\begin{gathered}
X_{T, 1}=X_{O}+r \cos \theta_{1} ; Y_{T, 1}=Y_{O}+r \sin \theta_{1} \\
X_{T, 2}=X_{O}+r \cos \theta_{2} ; Y_{T, 2}=Y_{O}+r \sin \theta_{2}
\end{gathered}
$$

Hence,
The coordinate of $1^{\text {st }}$ tangency point $\left(X_{T, 1}, Y_{T, 1}\right)$:

$$
\begin{gathered}
X_{T, 1}=X_{O}+r \cos \theta_{1}=X_{O}+r \cos \left(\sin ^{-1}\left(\frac{r \Delta y+\Delta x \sqrt{\Delta x^{2}+\Delta y^{2}-r^{2}}}{\Delta x^{2}+\Delta y^{2}}\right)\right) \\
Y_{T, 1}=Y_{O}+r \sin \theta_{1}=Y_{O}+r \sin \left(\sin ^{-1}\left(\frac{r \Delta y+\Delta x \sqrt{\Delta x^{2}+\Delta y^{2}-r^{2}}}{\Delta x^{2}+\Delta y^{2}}\right)\right)
\end{gathered}
$$

The coordinate of $2^{\text {nd }}$ tangency point $\left(X_{T, 2}, Y_{T, 2}\right)$:

$$
\begin{gathered}
X_{T, 2}=X_{O}+r \cos \theta_{2}=X_{O}+r \cos \left(\sin ^{-1}\left(\frac{r \Delta y-\Delta x \sqrt{\Delta x^{2}+\Delta y^{2}-r^{2}}}{\Delta x^{2}+\Delta y^{2}}\right)\right) \\
Y_{T, 2}=Y_{O}+r \sin \theta_{2}=Y_{O}+r \sin \left(\sin ^{-1}\left(\frac{r \Delta y-\Delta x \sqrt{\Delta x^{2}+\Delta y^{2}-r^{2}}}{\Delta x^{2}+\Delta y^{2}}\right)\right)
\end{gathered}
$$

$2^{\text {nd }}$ Approach:

Let introduce a new variable q in which q defined as the following:

$$
q \equiv \tan \left(\frac{\theta}{2}\right)
$$

The value of $\sin \theta$ and $\cos \theta$ represented in term of q given as the following:

$$
\begin{aligned}
& \sin \theta=2 \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right)=2\left(\frac{q}{\sqrt{1+q^{2}}}\right)\left(\frac{1}{\sqrt{1+q^{2}}}\right)=\frac{2 q}{1+q^{2}} \\
& \cos \theta=2 \cos ^{2}\left(\frac{\theta}{2}\right)-1=2\left(\frac{1}{\sqrt{1+q^{2}}}\right)^{2}-1=\frac{1-q^{2}}{1+q^{2}}
\end{aligned}
$$

Then, substitute these $\sin \theta$ and $\cos \theta$ into (1), it gives

$$
\begin{equation*}
\Delta x\left(\frac{1-q^{2}}{1+q^{2}}\right)+\Delta y\left(\frac{2 q}{1+q^{2}}\right)-r=0 \leftrightarrow \Delta x\left(1-q^{2}\right)+2 \Delta y q-r\left(1+q^{2}\right)=0 \tag{2.1}
\end{equation*}
$$

Now, let's rearrange and simplify (2.1) into the general quadratic equation, it follows that

$$
\begin{equation*}
\Delta x\left(1-q^{2}\right)+2 \Delta y q-r\left(1+q^{2}\right)=0 \leftrightarrow q^{2}-\frac{2 \Delta y}{r+\Delta x} q+\frac{r-\Delta x}{r+\Delta x}=0 \tag{2.2}
\end{equation*}
$$

Let's apply abc-formula and in this case $a=1 ; b=-\frac{2 \Delta y}{r+\Delta x} ; c=\frac{r-\Delta x}{r+\Delta x}$

$$
\begin{gather*}
q_{(1,2)}=\frac{\frac{2 \Delta y}{r+\Delta x} \pm \sqrt{\left(\frac{2 \Delta y}{r+\Delta x}\right)^{2}-4(1)\left(\frac{r-\Delta x}{r+\Delta x}\right)}}{2}=\frac{\Delta y \pm \sqrt{\Delta x^{2}+\Delta y^{2}-r^{2}}}{r+\Delta x} \tag{2.3}\\
q_{(1,2)}=\tan \left(\frac{\theta}{2}\right)_{1,2}=\frac{\Delta y \pm \sqrt{\Delta x^{2}+\Delta y^{2}-r^{2}}}{r+\Delta x}
\end{gather*}
$$

From (2.3), It has two distinct solutions which are θ_{1} and θ_{2}. Therefore, both of θ_{1} and θ_{2} are expressed below:

$$
\begin{align*}
& \theta_{1}=2 \tan ^{-1}\left(\frac{\Delta y+\sqrt{\Delta x^{2}+\Delta y^{2}-r^{2}}}{r+\Delta x}\right) \tag{2.4}\\
& \theta_{2}=2 \tan ^{-1}\left(\frac{\Delta y-\sqrt{\Delta x^{2}+\Delta y^{2}-r^{2}}}{r+\Delta x}\right)
\end{align*}
$$

It's known that both of θ_{1} and θ_{2} expressed in (2.4) are evaluated in radian unit (not in degree unit).

Moreover, the coordinate of tangency point $\left(X_{T}, Y_{T}\right)$ associated with θ_{1} and θ_{2} is given below:

$$
\begin{gathered}
X_{T, 1}=X_{O}+r \cos \theta_{1} ; Y_{T, 1}=Y_{O}+r \sin \theta_{1} \\
X_{T, 2}=X_{O}+r \cos \theta_{2} ; Y_{T, 2}=Y_{O}+r \sin \theta_{2}
\end{gathered}
$$

Hence,
The coordinate of $1^{\text {st }}$ tangency point $\left(X_{T, 1}, Y_{T, 1}\right)$:

$$
\begin{gathered}
X_{T, 1}=X_{O}+r \cos \theta_{1}=X_{O}+r \cos \left(2 \tan ^{-1}\left(\frac{\Delta y+\sqrt{\Delta x^{2}+\Delta y^{2}-r^{2}}}{r+\Delta x}\right)\right) \\
Y_{T, 1}=Y_{O}+r \sin \theta_{1}=Y_{O}+r \sin \left(2 \tan ^{-1}\left(\frac{\Delta y+\sqrt{\Delta x^{2}+\Delta y^{2}-r^{2}}}{r+\Delta x}\right)\right)
\end{gathered}
$$

The coordinate of $2^{\text {nd }}$ tangency point $\left(X_{T, 2}, Y_{T, 2}\right)$:

$$
\begin{gathered}
X_{T, 2}=X_{O}+r \cos \theta_{2}=X_{O}+r \cos \left(2 \tan ^{-1}\left(\frac{\Delta y-\sqrt{\Delta x^{2}+\Delta y^{2}-r^{2}}}{r+\Delta x}\right)\right) \\
Y_{T, 2}=Y_{O}+r \sin \theta_{2}=Y_{O}+r \sin \left(2 \tan ^{-1}\left(\frac{\Delta y-\sqrt{\Delta x^{2}+\Delta y^{2}-r^{2}}}{r+\Delta x}\right)\right)
\end{gathered}
$$

Reference:

[1]. https://spbhat.in/blogs/tangent/index.html, accessed on Friday, July 5, 2019 at 4.14 PM

