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The truncation error of a numerical method is dependent on the grid spacing. That is, every
time we reduce the grid spacing (cell size), the truncation error is expected to reduce. This can
be observed theoretically by carrying out a Taylor’s series expansion of the numerical scheme
and subtracting the result from the exact partial differential equation. The residue left out is the
truncation error, which can be written as,

e=co(Ax)? + 1 (M) 40y (AX)9 T2 (1)

where, ¢;; i = 0,1,2... are coefficients which are independent of cell size. Neglecting the
higher order terms (since Ax is small), we get,

erc(Ax)° = e o (Ax)° (2)

The order of such a scheme is said to be O. It may not be always possible to carry out a theo-
retical analysis of a non-linear method, such as in the case of SDWLS, WENO or limiter based
methods. In such schemes the formulation is dependent on the solution and thus, a priori Tay-
lor’s series expansion is not possible. This calls for a numerical approach for obtaining the
order of accuracy of the scheme. To carry out the numerical analysis, of order of accuracy, we
can write equation (2) for two cell sizes, say Ax; and Ax, and the corresponding errors as €1
and €;. This results in the following two equations,

er o (Axp)? 3)
e2 o (Ax2)” 4)
Now, dividing equation (4) by equation (3) results in the following equation,
€ AXZ 0
o (A_x1> = log(e2) —log (1) = O.(log (Axz) — log (Ax1)) (5)

Rearranging this equation, we get an expression for the order of accuracy as,

_log(e2) —log (e1) ©)
log (Axz) — log (Axq)

This can be observed as the slope of a curve on a log-log plot of error versus cell size. It may be
noted that the Ax is a measure of the cell size, and for a two-dimensional Cartesian mesh it is

appropriately defined as,
h=+/Ax Ay (7)
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1 REVIEW OF LITERATURE

In case of unstructured mesh, the measure of cell size is defined by the average of all the cells
in the domain, which can be defined as,

(8)

- \/ area of domain
total number of cells

and therefore, the order of accuracy of the method for a two-dimensional problem gets rede-
fined as,
_ log (e2) —log (e1) ©)
log (hy) —log (hy)

An order of accuracy analysis is a systematic process in which the error is obtained for var-
ious cell sizes. The error versus cell size is then plotted on a log-log plot. The actual order is
obtained by calculating the slope of the curve on this plot. It has been pointed out by Toro [1],
that the order of accuracy may not be apparent in case of non-linear schemes. It is therefore
essential to carry out the order of accuracy analysis of new schemes before using them. In
my work, I have computed numerically the order of accuracy of the following solution re-
construction methods: first order, Beam-Warming scheme using van Albada limiter, linear and
quadratic SDWLS, third order and fifth order WENO method. The analysis has been conducted
for various problems in one-dimension and two-dimensions on a structured and unstructured
mesh.

1 Review of Literature

The Godunov theorem [?] states that it is not possible for a linear higher order scheme, (of or-
der two or higher), to ensure a non-oscillatory solution. It is however observed that, if there are
no discontinuities in the solution then, the numerical solution obtained by a linear high order
scheme is much superior compared to the first order upwind scheme. It has been a quest of
many researches to circumvent the limitation imposed by the Godunov theorem to achieve an
order of accuracy as high as possible. This effort has led to two classes of methods of adding
non-linearity to the scheme. The two classes of methods are: the artificial viscosity methods
and the total variation diminishing methods. In case of artificial viscosity methods [3] addi-
tional non-physical, viscous like terms, are added to the scheme such that the oscillations are
damped out. The currently available methods in this class, have to define a coefficient which
has to be tuned according to the problem. Therefore, these methods are not easily extensible to
general problems. The total variation diminishing (TVD) methods include slope-limiters and
flux-limiters to locally switch to a lower order, based on the local gradients. This class of meth-
ods are more general to extend to any type of problems and therefore are more widely used.
Many major contributions have been made to this class of methods over the years [?, 4-10].
Various limiters have been defined which perform identically far away from the discontinu-
ity but change their behavior close to the region of high gradients. The limiter versus the
gradient-ratio plot commonly known as Sweby plot [9] is used in these methods to define a
limiter function. Some of the widely used limiter functions are SUPERBEE [11], VANLEER [4],
VANALBADA [12], MINMOD [13].

A hybrid class of schemes closely related to TVD methods are solution dependent methods.
In these methods a MUSCL-type [14] solution strategy is used, with a linear combination of
all possible solution reconstructions. MUSCL stands for Monotone Upstream-centered Scheme
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2 NEED OF HIGH ORDER METHODS

for Conservation Laws. These type of methods include a family of more recent methods like
SDWLS [15,16] and WENO [17] methods. The combination of weights is so chosen, such that
it reduces the oscillations. These methods do not enforce the TVD condition explicitly, and
therefore may encounter oscillations within acceptable limits. In the SDWLS method, each
of the neighboring cells are expressed as a function of the cell value and derivatives, using
Taylor’s series expansion, about the cell’s centroid. This results in a system of equations with
the derivatives as unknowns. Now, this system of equations are solved for the derivatives in
a least-square sense, after application of weights. The weights are inversely proportional to
the variation from the central cell, thus reducing the oscillations. The WENO method uses
an approach where, all the candidate stencils are reconstructed. Appropriate weights are then
applied to each of the stencil solutions based on the smoothness in the stencil.

The current trends in high order methods and their need are very well reviewed by Wang
and group in their article [15]. The order of accuracy analysis of WENO methods for structured
grids is performed by Balsara [19]. The analysis on unstructured grid for WENO methods is
carried out by Hu [20] and Liu [21]. Using the ADER approach (Arbitrary high-order DERiva-
tive Riemann problem) and discontinuous Galerkin finite element method, the analysis has
been performed by Dumbser et al. [22,23].

2 Need of High Order Methods

The goal being that we need to achieve some level of accuracy, say 1072 of absolute error, we
may ask ourselves the following question. Are high order methods really required? or is it
more efficient to solve the problem on a very fine mesh using a first order method? It is well
known that a first order method will run much faster than a second order method on a given
mesh. But if we keep refining the mesh until the first order method achieves similar solution
as second order method, will the first order method still take lesser time? The following simple
demonstration tries to answer this question by actually solving a problem on various uniformly
refined grids and comparing the computational time and memory requirement. The problem
being solved here is a simple advection equation (10), initialized with a smooth sine function
(11) having a wave number of unity (see Figure 1). The boundary conditions are periodic and
thus the final exact solution after 1 complete cycle is same as the initial distribution. The domain
length chosen is 2 ranging from —1 to +1.

ur+uy =20 (10)
ug = u (x,t =0) = sin (27x) (11)

Using a trial and error method, the number of grid cells required by the second order
method is estimated. To achieve an Ly-error of approximately 102, the second order method re-
quires 320 cells as seen in Table 1. Whereas, the first order method takes a phenomenal amount
of cells, about 128 times more, as seen in Table 2, and therefore a proportionally large amount
of memory. An even more appealing advantage of high-order methods can be observed by
comparing the time taken. To achieve a similar Ly-error, approximately 103, the first order
method takes more than 20,000 times more computational time!. This overwhelming differ-
ence is observed due to two reasons. The first reason is obviously due to the higher number of
mesh cells required by the first order method. The second reason is most probably the limited
cache on the machine which caused repeated cache flushing. This efficiency gap between an
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2 NEED OF HIGH ORDER METHODS

Grid Size Ly Error Compute Time
(Absolute) (x1073 seconds)
80 1.8518 x 102 ~ 20
160 45853 x 1073 ~ 30
320 1.1431 x 1073 ~ 80
640 2.8555 x 10~* ~ 200
1280 7.1374 x 107° ~ 700
2560 1.7842 x 10> ~ 1800
5120 44606 x 10~° ~ 7000
10240 1.1152 x 10°° ~ 35000

Table 1: Error and computational time for Fromm (second order) method

Grid Size Ly Error Compute Time
(Absolute) (x1073 seconds)
10240 54313 x 1073 ~ 20000
20480 2.7209 x 1073 ~ 300000
40960 1.3617 x 1073 ~ 1735000

Table 2: Error and computational time for first order upwind method

sin(2az)

Figure 1: Sine distribution with wave number =1
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3 RESULTS AND DISCUSSION
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Figure 2: Solution of advection equation for sine function (160 cells)

high order method and a lower order method grows as we demand for more and more accu-
rate results. Thus, this small experiment makes it obvious that, we must try to use higher order
methods whenever possible. There are however, two major difficulties associated with high-
order methods. The first difficulty is due to the oscillations which appear in the solutions. The
second difficulty is associated with the stability of the methods. The TVD, SDWLS and WENO
methods try to overcome these difficulties by using a non-linear solution dependent approach.

3 Results and Discussion

Few standard problems are considered here for ascertaining the order of accuracy. The meth-
ods for which the order is computed and compared include: first order, second order Beam-
Warming using van Albada limiter, SDWLS-L (linear SDWLS), SDWLS-Q (quadratic SDWLS),
WENOQOS3 (third order WENO) and WENO?5 (fifth order WENO).

3.1 One-Dimensional Problems
3.1.1 Smooth sinusoidal distribution

The initial condition considered here is a sine distribution as shown in Figure 1. The number
of grid cells is increased gradually from 20 up to 320. The final solution after 10 cycles (with
CFL = 0.6) is shown in Figure 2 for all tested reconstruction methods and a grid size of 160 cells.
The order of accuracy, as given by equation (6), is calculated after 1 cycle (with CFL = 0.1) and
is tabulated in Table 3 through Table 7.

3.1.2 Smooth Gaussian distribution

In this problem the initial condition considered is a smooth Gaussian distribution (12) as shown
in Figure 3. The number of grid cells is increased gradually from 20 up to 320. The final solution
after 10 cycles (with CFL = 0.6) is shown in Figure 4 for all tested reconstruction methods and
a grid size of 160 cells. The order of accuracy, as given by equation (6), is calculated after 1 cycle
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3.1 One-Dimensional Problems

3 RESULTS AND DISCUSSION

Grid Size L1 Error L Order L, Error L, Order L Error Lo Order
20 6.3783 %101 - 6.9694 %101 - 9.8550x 101 -
40 55120x10~ 1| 0.211 |6.1006x10~1| 0.192 |8.5619x10°! | 0.203
80 3.9969x10°1 | 0464 |44370x10°1| 0459 |6.2677x10°1| 0.450
160 24798x107 1| 0689 |[2.7543x1071| 0.688 |3.8944x10°1| 0.687
320 1.3920x10~1 | 0.833 |1.5461x10°!| 0.833 |2.1865x10°!| 0.833
Table 3: Accuracy analysis (sine wave) for First Order Scheme
Grid Size L1 Error L1 Order L, Error L, Order L Error Lo Order
20 4.3153 %101 - 4.7967 %1071 - 7.0460x 1071 =
40 1.2665x10~1 | 1.769 | 1.5824x10~1| 1.600 |2.7562x10~ 1| 1.354
80 5.3284x1072| 1.249 |6.0653x1072| 1.383 | 1.0793x10°1 1.353
160 1.4431x107%2 | 1.885 | 1.8485x107%2| 1.714 |4.1907x107%2| 1.365
320 3.6118x107° | 1.998 |54723x1073| 1.756 | 1.5835x1072| 1.404
Table 4: Accuracy analysis (sine wave) for Beam-Warming Scheme
Grid Size L1 Error L1 Order L, Error L, Order Lo Error Loo Order
20 4.3705% 101 - 4.8630x107! - 7.1521 %101 -
40 1.2749x10~ 1 | 1777 |15975x10~1| 1.606 | 2.7804x10°! 1.363
80 5.3672x1072| 1.248 |6.1084x10°2| 1.387 | 1.0862x10°1 1.356
160 1.4500x<10~2 | 1.888 | 1.8587x10~2| 1.717 | 4.2099x10~2 1.367
320 3.6250x107° | 2.000 |5.4955x10~° | 1.758 | 1.5876x10~>| 1.407
Table 5: Accuracy analysis (sine wave) for SDWLS-Linear Scheme
Grid Size L1 Error L1 Order L> Error L, Order Lo Error Lo Order
20 4.7010x 101 — 5.2244 %1071 - 7.6135x10° 1 -
40 1.5456x10~1 | 1.605 |1.9506x10~1| 1.421 |3.2949x10°! 1.208
80 6.6494x10°2 | 1217 |75612x10°2| 1.367 | 1.3149x10°1 1.325
160 1.6817x1072 | 1983 |23098x10°2| 1711 |5.1299x102 1.358
320 3.3952x107° | 2308 |[5.7918x107° | 1.996 | 1.6663x10~>| 1.622

Table 6: Accuracy analysis (sine wave) for third order WENO Scheme

Grid Size L1 Error L; Order L, Error L, Order L Error Lo Order
20 5.4333x 1072 - 6.0128 1072 - 8.6949 102 -
40 2.8407x1073 | 4257 [3.1719x1073 | 4245 |45297x1073 | 4.263
80 9.0664x107° | 4.970 | 1.0420x10~*| 4.928 | 1.6812x10~*| 4.752
160 295301076 | 4940 |3.3420x10°°| 4962 |5.6386x107°| 4.898
320 1.0732x10~7 | 4.782 [ 1.2000x10~7 | 4.800 | 1.9843x10°7 | 4.829
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Figure 4: Solution of advection equation for a Gaussian function (160 cells)

(with CFL = 0.1) and is tabulated in Table 8 through Table 12.

G(p,o)=f(x)=ae 22 ;a ; u=0; 0> =0.05 (12)

1
N o\ 27T

3.1.3 Distribution with various sub-functions

In this problem the initial condition considered is a complicated function (13) comprising of
various sub-functions as shown in Figure 5. The number of grid cells is increased gradually
from 20 up to 320. The final solution after 10 cycles (with CFL = 0.6) is shown in Figure 6 for
all tested reconstruction methods and a grid size of 160 cells. The order of accuracy, as given
by equation (6), is calculated after 1 cycle (with CFL = 0.1) and is tabulated in Table 8 through
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3 RESULTS AND DISCUSSION

Grid Size L1 Error L Order L, Error L, Order Le Error Lo Order
20 3.7118 1071 - 4.4005x10~! - 9.5286x10~! -
40 25937x10~1 [ 0517 [3.2232x10°1| 0449 |7.4809x10°!'| 0.349
80 1.6605x10~1 | 0.643 |2.1632x10~1| 0575 |5.2166x10"1| 0.520
160 9.7763x1072 | 0.764 | 1.3205x10°1| 0.712 |3.2727x10°1| 0.673
320 5.3936x1072 | 0.858 | 7.4542x1072| 0.825 | 1.8834x10°1 0.797
Table 8: Accuracy analysis (Gaussian) for First Order Scheme
Grid Size L1 Error L Order L, Error L, Order Le Error Lo Order
20 1.3888x 101 - 1.9387x10~! - 4.8635x10~1 -
40 4.4164x1072 | 1.653 |7.6203x10°2| 1.347 |2.3214x10°! 1.067
80 1.4258x1072 | 1.631 |2.7112x107%2| 1491 |[9.7092x107%2| 1.258
160 3.9880x107° | 1.838 |85159x103| 1.671 |3.8131x10°%2| 1.348
320 1.0168x1073 | 1972 |[25281x1073| 1.752 | 1.4450x10=%| 1.400
Table 9: Accuracy analysis (Gaussian) for Beam-Warming Scheme
Grid Size L1 Error L; Order L, Error L, Order L Error Lo Order
20 1.4003x 107! — 1.9542x 1071 - 49070x10~1 -
40 4.4487x107%2 | 1.654 |7.6694x1072| 1.349 |[2.3373x10°1 1.070
80 1.4329%x1072 | 1.635 |2.7262x107%2| 1492 |9.7635x10°%2| 1.259
160 4.0017x107° | 1.840 | 8.5584x107°| 1.671 |3.8297x10>| 1.350
320 1.0195x1073 | 1973 |[25416x107° | 1.752 | 1.4514x10~2| 1.400
Table 10: Accuracy analysis (Gaussian) for SDWLS-Linear Scheme
Grid Size L1 Error L1 Order L, Error L, Order L Error Le Order
20 1.5893x10~ 1 - 2.1619x10°! - 5.3957x10"! =
40 5.3341x1072 | 1575 |8.6013x1072| 1.330 |2.6760x10°" 1.012
80 1.6307x1072 | 1.710 |3.2844x1072| 1.389 | 1.1658x10°! 1.199
160 4.0067x1073 | 2.025 [1.0383x10°2| 1.661 |4.5883x10°%| 1.345
320 7.8063x107* | 2360 |25753x107° | 2.011 | 1.4741x1072| 1.638

Table 11: Accuracy analysis (Gaussian) for third order WENO Scheme

Grid Size L1 Error L; Order L, Error L, Order L Error Lo Order
20 2.0664x102 - 3.0251x 102 - 8.7248 x 102 -
40 1.7346x1073 | 3574 |25299x1073| 3.580 |5.9983x107°| 3.862
80 7.2286x107° | 4585 | 1.0558x10% | 4.583 |2.8730x10%| 4.384
160 2.6672x1076 | 4760 |3.7430x10°° | 4.818 |1.1333x107° | 4.664
320 1.7407x10~7 | 3.938 |[5.3205x10~7 | 2.815 |5.2724x10°° 1.104

Table 12: Accuracy analysis (Gaussian) for fifth order WENO Scheme
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Figure 5: Combination of various functions
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Figure 6: Solution of advection equation for a combination of functions (160 cells)

Table 12.
(exp (—1%9%1n (2) (2 (x, — 0.15))*) 0.1 < x, < 0.2
1 03<x <04 N
F(x)=41-20 |x, — 0.55] 05<x <065 =————— (13
2 max min
1—100 (2 (x, — 0.75)) 07 <x <08
(0 otherwise

3.2 Two-Dimensional Scalar Problems

A two-dimensional scalar advection equation may be written as,

ur+ux+uy =0 (14)
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Grid Size L1 Error L; Order L, Error L, Order L Error Lo Order
20 2.8497x 101 — 3.3803x10° ! - 7.1802x10~ 1 -
40 3.0359x10° 1 | -0.091 |3.5332x10° 1| -0.064 | 7.0380x10°! 0.029
80 29221x10~t | 0.055 |3.5076x10~!| 0.010 | 7.1532x10~1 | -0.023
160 2.7212x10~1 | 0.103 |[3.3114x10° 1| 0.083 |7.8758x10° 1| -0.139
320 22939x10~ 1| 0.246 |2.8575x10~!| 0213 | 7.6753x10°! 0.037

Table 13: Accuracy analysis (13) for First Order Scheme

Grid Size L1 Error L; Order L, Error L, Order Le Error Lo Order
20 2.5910%x 101 — 3.1750%x 10! - 6.3457 <101 -
40 2.6976x10~1 | -0.058 |3.2795x10~!| -0.047 | 6.0818x10°! 0.061
80 2.0021x10"T | 0430 |[25518x10° 1| 0362 |6.488x10° 1| -0.093
160 1.0248x10°1 | 0966 | 1.5853x10~ 1| 0.687 |5.7906x10~ 1| 0.164
320 48108x10~ 2| 1.091 |1.0118x10° '] 0.648 |5.1687x10°! 0.164

Table 14: Accuracy analysis (13) for Beam-Warming Scheme

Grid Size L1 Error L Order L, Error L, Order Le Error Leo Order
20 2.5931x1071 — 3.1805x107! - 6.3881x 101 -
40 2.7021x10° 1 | -0.059 |3.2851x10" 1| -0.047 | 6.0848x10°! 0.070
80 2.0076x10" 1| 0429 |25574x10°1| 0.361 | 6.5000x10°1 | -0.095
160 1.0265x10° 1 | 0968 | 1.5873x10°1| 0688 |5.7997x10! 0.164
320 4.8149%x 102 1.092 | 1.0125x1071 0.649 |5.1686x10° ! 0.166

Table 15: Accuracy analysis (13) for SDWLS-Linear Scheme

Grid Size L1 Error L1 Order L, Error L, Order Lo Error Loo Order
20 2.6105x1071 — 3.2012x10° 1 — 6.5242 %101 -
40 2.7547x10~ 1 | -0.078 |3.3309x10°!| -0.057 | 6.2006x10°! 0.073
80 21772x10° Y[ 0339 |27296x10° 1| 0.287 | 6.6667x10°1 | -0.105
160 1.1729x10° 1 | 0.892 | 1.7091x10°1 0.675 | 6.1130x10°1 0.125
320 5.4272 %102 1.112 | 1.0651x107! 0.682 | 4.5813x10°1 0.416

Table 16: Accuracy analysis (13) for third order WENO Scheme

Grid Size L1 Error L; Order Ly Error L, Order Lo Error Loo Order
20 2.5031x10! — 3.0966x107 ! - 6.1587x 101 —
40 1.8443x10°1 | 0.441 |2.3200x10°1 0417 | 4.9434x1071 0.317
80 9.0391x102 | 1.029 |1.4733x10° '] 0.655 | 4.9213x10°! 0.006
160 38805x1072| 1220 |8.6782x10°2| 0.764 | 4.0956x10° 1 0.265
320 1.6053x10~2 | 1273 |58798x10°2| 0562 |4.1746x10°1 | -0.028

Table 17: Accuracy analysis (13) for fifth order WENO Scheme
(© Sourabh Bhat (https:/ /spbhat.in) 10
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Figure 7: Exact solution of the scalar advection problem

Grid Size L1Error L,Order LyError L,Order LeoError LoOrder
40 5.4571 x 102 - 6.2173 x 1072 - 1.1105 x 1071 —
80 1.4744 x 1072 | 1.888 |1.8937 x1072 | 1.715 |4.2831x107%2| 1.374
160 3.6733 x 1073 | 2.005 [5.5964 x 1072 | 1.759 | 1.6094 x 10~2| 1.412
320 89758 x 10~% | 2.033 |1.6302x10 3| 1779 |5.9662 x 1073 | 1.432

Table 18: Accuracy analysis (2D function 15) for SDWLS-L Scheme

The exact solution of this equation is simple translation of the initial distribution with a velocity
of (1,1). A standard test case [20,21] with an initial smooth distribution given by (15) is solved
by using various reconstruction methods and an order of accuracy analysis is performed on
structured and unstructured mesh.

u=sin(g(x+y)) 2<x<2 —2<y<2 (15)

3.2.1 Smooth sinusoidal distribution (on structured mesh)

The order of accuracy for two-dimensional formulation of the reconstruction methods is evalu-
ated by using unsplit approach. The scalar variable is reconstructed in both directions, using the
same surrounding data at time level n. The flux is calculated using the Local Lax-Friedrich Rie-
mann solver. The evolution is done by using an explicit stability preserving three step Runge-
Kutta method [24]. Since periodic boundary conditions are applied, the initial and the exact
tinal solution are the same as shown in Figure 7. The order of accuracy calculations are dis-
played in Table 18 through Table 21.
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Grid Size L1Error L1Order LyError L,Order LeoError LoOrder
40 5.4571 x 102 - 6.2173 x 102 - 1.1105 x 1071 —
80 2.1504 x 1073 | 4.665 [2.3934x 1073 | 4.699 |3.3851x10°°| 5.036
160 52013 x 10~% | 2.048 [5.7800 x 10~*| 2.050 | 8.1731 x10~*| 2.050
320 12890 x 10~% | 2.013 |[14318x10~%| 2.013 |2.0248x10%| 2.013

Table 19: Accuracy analysis (2D function 15) for SDWLS-Q Scheme

Grid Size L1Error L,Order LyError L,Order Lo Error LooOrder
40 6.7666 x 1072 - 7.6834 x 102 - 1.3491 x 101 —
80 17573 x 1072 | 1945 |24158x 1072 | 1.669 |5.3948x10° 2| 1.322
160 42528 x 1073 | 2.047 |72586x10 3| 1.735 |2.0760x10~2| 1.378
320 9.8992 x 10~ % | 2103 [21344x10°| 1766 |7.8229x103| 1.408

Table 20: Accuracy analysis (2D function 15) for WENO3 Scheme

3.2.2 Smooth sinusoidal distribution (on unstructured mesh)

The equation governing the evolution of the initial conditions (15) is given by (14). The equation
is solved on a unstructured mesh using the Local Lax-Friedrich (LLF) Riemann solver, using 2
Gauss-Quadrature points and a CFL = 0.3. The results of the accuracy analysis are displayed
in Table 22. It can be observed that the L; error in case of SDWLS-L drops at an order of about
1.7 and in case of SDWLS-Q the error drops at an order of about 2. The SDWLS-L method
does not behave very well in terms of Lo, error as the error drops only at the rate of about
1, while SDWLS-Q maintains the order of about 2. As expected the magnitude of error in
case of SDWLS-Q is smaller compared to SDWLS-L by an order of magnitude. The results
from the literature [20, 21] for third order WENO and fourth order WENO show 3.0 and 4.0
respectively as the order for fine mesh. The magnitude of error of the WENO3 on fine mesh
is better compared to SDWLS-Q, however on coarser mesh SDWLS-Q behaves much better,
comparing the results from the literature [17] with similar mesh sizes.

3.3 Two-Dimensional Euler Equations

The general form of two dimensional conservation equations of gas dynamics can be written

as,
U 9F oG

ot Tox oy
where, U is the vector of conservative variables and F and G are flux vectors. In case of Euler
equations,

0 (16)

Grid Size L1Error L1Order LyError L,Order Lo Error LooOrder
40 9.2927 x 102 — 1.0637 x 104 — 1.7326 x 1074 -
80 32479 x 10°° | 4.839 [36583 x10°°| 4862 |6.0877 x10°°| 4.831
160 14425 x 1077 | 4.493 |1.6071 x10~7 | 4509 |25540 x 107 | 4.575
320 9.8598 x 1077 | 3.871 | 1.0954 x 108 | 3875 [1.6289 x10 8| 3.971
Table 21: Accuracy analysis (2D function 15) for WENOb5 Scheme
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Figure 8: Mesh with 1218 and 4898 cells — for scalar advection equation

| Method | MeshCells | LjError [ L;Order | Lo Error | Lo Order |

308 1.4587 x 101 - 3.4983 x 10! —
1218 62217 x 1072 | 1.240 | 1.4327 x10° ! 1.299
4898 1.7940 x 102 | 1.787 | 5.7394 x 102 1.315

SDWLS-L 20076 45129 x 1073 | 1957 [21144x10°2| 1.416
80186 12476 x 1073 | 1.857 | 1.2088 x 10°2| 0.808
322940 | 4.0421x 10 %] 1.618 |6.0216 x103| 1.000
308 6.3938 x 102 - 1.2679 x 101 —
1218 15111 x 1072 | 2.098 [29719 x10°2| 2.110
SDWLS-Q 4898 3.6505 x 103 | 2042 [69103x10°3| 2.097

20076 8.8506 x 10~ % | 2.009 | 1.5355 x 103 2.133
80186 22109 x 10~%| 2.003 |3.7314 x 1072 2.043
322940 54800 x 10> | 2.003 | 8.9400 x 10> 2.051

Table 22: 2D Linear advection problem — unstructured mesh, T=2, RK3
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0 pou U
2
_ | ou |, _ pu-+p . _ puv
U= oo | F = ouv ;0 G = pvz +p (17)
pE (PE+p)u (PE+p)v
where, E = (e + #), e=cyl = %, and R and v are gas constants.

3.3.1 Isentropic vortex (on structured mesh)

The convecting isentropic vortex is a classical test problem in gas dynamics for solving Euler
equations where the initial vortex travels diagonally (45° to grid lines) through the domain.
This problem provides a test case for evaluating the capability of a method to retain vortex
structures after long evolution in time. After one full travel cycle, the exact solution is the
initial condition itself as shown in Figure 9. Hence, it is an ideal problem for checking the order
of accuracy of a method for system of conservation equations. The test problem is defined
by a uniform flow field over which a perturbation (defining the vortex) is imposed at initial
time. The uniform flow field is given as (i, V) = (1,1), po = 1 and Tee = 1 with the
entropy defined as S = r/p7. The gas constants are given as R = 1, v = 1.4 and the ideal gas
law p = pRT is used for relating the pressure, density and temperature. The perturbations
imposed over this uniform flow field are given by,

(6u,d6v) = (—y, x) % exp <0.5 (1 - r2>> (18)
5T = —%exp (1—#); 55 =0 (19)

where, € = 5 is the strength of the vortex and r = \/ (x — xc)* + (y — yc)z is the distance from
the center (x.,y.) of the domain. The domain of the problem is given as [0,10] x [0, 10] with
periodic boundary conditions and (x.,y:) = (5,5). The initial conditions to be imposed are
given by (up, vg) = (Uheo + 011, Voo + 0v) and Ty = Teo + 0T. The isentropic condition along with
the ideal gas law provides an equation for initial density given by,

00 = Tg/(v—l) (20)

Table 23 shows the order of accuracy analysis performed using Cartesian structured grid
using various methods with gradually refined grid size starting from a grid of 40 x 40 up to a
grid of 640 x 640. The values presented are the errors in p (density).

3.3.2 Isentropic vortex (on unstructured mesh)

The order of accuracy analysis on an unstructured mesh is performed using linear and quadratic
SDWLS for the isentropic vortex problem defined above. The size of finite volume cells is main-
tained similar to [20] and [21] so that the results can be compared with WENO methods. The
flux is integrated over the cell interfaces using 2 quadrature points. Table 24 shows the results
obtained for order of accuracy for SDWLS-L and SDWLS-Q. It is seen that the order of accu-
racy of SDWLS methods reduces slightly on unstructured mesh compared to structured mesh.
This can be attributed to the first order boundary conditions applied at the boundaries, due to
shortage of neighboring cells.
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Figure 9: Solution of isentropic vortex problem

| Method | GridSize | LjError |[L;Order| Lo Error | Lo Order |

40x40 | 1.8648 x 102 - 3.5827 x 107! -

80x80 |6.7533x 1073 1465 |1.3699 x 10! 1.387
WENO3 | 160x160 | 2.3043 x 1073 | 1.551 | 6.2397 x 102 1.135
320x320 | 9.7804 x 10~% | 1.236 |[3.4682x107%2| 0.847
640x640 | 4.0724 x 10~% | 1264 | 1.5401 x 102 1.171

40x40 | 4.5303 x 103 — 8.6201 x 102 -

80x80 | 75852 x 10~ %] 2578 |2.0797 x10 2| 2.051
WENO5 | 160x160 | 1.3032 x 10~° | 5.863 |2.1400 x 10~ % | 6.603
320x320 | 23729 x 107 | 2457 [2.6636 x10~° | 3.006
640x640 | 5.8223 x 107 | 2.027 |4.3874x10°°| 2.602

40x40 1.6162 x 102 - 3.2021 x 10~ 1 -

80x80 | 4.7500 x 107 1.766 9.7100 x 102 1.721
SDWLS-L | 160x160 | 1.3529 x 107 1.812 5.3834 x 102 0.851
320x320 | 3.8434 x 10~* 1.816 2.7490 x 10~ 0.97
640x640 | 9.2878 x 107> 2.049 9.4313 x 1073 1.543

40x40 | 7.2217 x 1073 - 1.5153 x 101 -

80x80 | 1.4289 x 1073 | 2337 |[2.9510 x 102 2.36
SDWLS-Q | 160x160 | 2.5447 x 10~% | 2.489 |[5.6347 x 1073 | 2.389
320x320 | 43264 x 10 ° | 2556 | 1.0280 x 103 | 2454
640x640 | 89168 x 107 ¢ | 2279 |[2.0525x 10~ % | 2.324

Table 23: Isentropic vortex problem — structured mesh, CFL=0.3, T=10, RK3
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Figure 10: Mesh with 1212 and 4960 cells — Euler equations

| Method | MeshCells | LjError [ L;Order | Lo Error | Lo Order |

300 2.7387 x 102 - 4.4705 x 101 —
1212 2.3037 x 102 0.248 | 4.1500 x 1071 0.107
4960 13521 x 1072 | 0.756 | 2.5222 x 101 0.707

SDWLS-L _ -
20076 5.1255 x 103 1.388 | 1.2212 x 1071 1.038
80578 1.9941 x 1073 | 1.359 | 4.7943 x 102 1.346
323802 | 8.7036 x 10°*| 1.192 | 2.3380 x 102 1.033
300 2.3812 x 102 - 3.9192 x 10! —
1212 84004 x 1073 1.492 |1.7874 x 107! 1.125
SDWLS-O 4960 1.8300 x 103 | 2.163 | 4.0530 x 102 2.106

20076 38147 x 107 % | 2243 [8.4089 x 103 2.25
80578 79387 x 10 ° | 2259 | 1.8051 x 10~° 2.214
323802 1.8002 x 10~° 2134 | 3.8676 x 10~% 2.215

Table 24: Isentropic vortex problem — unstructured mesh, CFL=0.3, T=10, RK3
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